sbl方法介绍 稀疏贝叶斯学习方法与支持向量机学习方法均是围绕核函数构建预测模型的方法,而相比较于支持向量机方法,稀疏贝叶斯学习方法的最重要的特点在于其学习过程是基于贝叶斯架构的,而不是采用结构风险最小化原则,这就使稀疏贝叶斯学习方法拥有如下独特优势:(1)能够提供概率分布预测结果;(2)无需对支持向量机中平衡经验
matlab瑞利衰落信道仿真 主要运用MATLAB进行编程,实现采用对输入信号进行抑制载波的双边带调幅;而后将调幅波输入信道,研究多径信道的特性对通信质量的影响;最后将信道内输出的条幅波进行同步解调,解调出与输入信号波形相类似的波形,观测两者差别。同时输出多普勒滤波器的统计特性图及信号时域和频域的输入、输出波形。