Ta上传的资源 (0)

随着数据的不断积累和增长,各个行业都在思考一个相同的问题,怎样把数据从成本转化为价值?怎样从庞大的数据集中分析出有用的信息来用于企业的市场经营和企业决策?

L是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。ETL是BI项目重要的一个环节。通常情况下,在BI项目中ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败。

数据仓库实施过程中最简单最重要的方法就是迭代构建一个数据仓库。而不是采用“大棒”方法构建数据仓库。快速创建数据仓库的一个迭代,然后不断调整,并快速进入下一个迭代,以此类推。不要一下子收集所有需求,也不要采用瀑布开发生命周期的方式开发数据仓库。

数据仓库作为决策支持系统(DSS)的基础,具有面向主题的、集成的、不可更新的、随时间不断变化的特性。这些特点说明了数据仓库从数据组织到数据处理, 都与原来的数据库有很大的区别,这也就需要在数据仓库系统设计时寻求一个适合于数据仓库设计的方法。