在传统的基于欧几里德距离函数的轨迹相似性计算过程中,要求轨迹等长且时间点对应,无法度量不等长且有局部时间偏移的轨迹相似性。因此在构造同步轨迹集合过程中产生信息损失较大,影响轨迹数据的可用性。为此,通过引进一种可以度量不等长且有局部时间偏移的轨迹间相似性的DTW(dynamictimewarping)距离度量函数,提出一种新的轨迹匿名模型——(k,δ,p)-匿名模型,构造了DTW-TA(dynamictimewarpingtrajectoryanonymity)算法。在合成数据集和真实数据集下的实验结果表明,该算法在满足轨迹k-匿名隐私保护的基础上,减少了信息损失,提高了轨迹数据的可