.
卷积神经网络是深度学习最重要的模型之一。本书是卷积神经网络领域的入门读物,假定读者不具备任何机器学习知识。书中尽可能少地使用数学知识,从机器学习的概念讲起,以卷积神经网络的最新发展结束。本书首先简单介
3.卷积神经网络基础 卷积其实是一种信号过滤器,实际上做的二维互相关运算。以前理解 的是卷积运算,现在才发现这就是互相关运行,说白了就是用卷积核遍历输入的数组。 池化是一种降维操作。 互相关运算和卷积
深度学习Python库.卷积网络,递归神经网络。运行Theano或TensorFlow之上
深度学习之卷积神经网络CNN做手写体识别的VS代码。支持linux版本和VS2012版本。tiny-cnn:AC++11implementationofconvolutionalneuralnetwo
深度学习 卷积网络 图像处理 怪兽学堂 PPT
一、基础知识 1.1卷积神经网络(CNN) CNN新出现了卷积层(Convolution层)和池化层(Pooling层), 这两种不同类型的层通常是交替的, 最后通常由一个或多个全连接层组成 卷积网络
本文档从最基础的原理着手,介绍了使用CNN卷积神经网络进行图片分类,是利用深度学习通过卷积神经网络进行图片分类比较不错的参考资料。
简介 CNN -> Convolutional Neural Network 卷积神经网络是由一个或多个卷积层和顶端的全连通层(也可以使用1×1的卷积层作为最终的输出)组成的一种前馈神经网络 基
卷积神经网络用到的数据集图片、训练好的权重等参数文件
用户评论