一、基础知识 1.1卷积神经网络(CNN) CNN新出现了卷积层(Convolution层)和池化层(Pooling层), 这两种不同类型的层通常是交替的, 最后通常由一个或多个全连接层组成 卷积网络的核心思想是将:局部感受野、权值共享(或者权值复制)以及时间或空间亚采样(池化)这三种结构思想结合起来获得了某种程度的位移、尺度、形变不变性. 诺贝尔奖获得者神经生理学家Hubel和Wie-sel早在1960年代发现了大脑视觉处理的开始阶段对视觉域的所有部分都作用了同样的局部滤波器,而在视觉处理过程进行时,信息由输入变得更广的部分整合起来的,这个工作通过层次完成. 在卷积神经网络中也遵循同样的模式