统计学习理论是针对小样本情况研究统计学习规律的理论,是传统统计学的重要发展和补充,为研究有限样本情况下机器学习的理论和方法提供了理论框架,其核心思想是通过控制学习机器的容量实现对推广能力的控制。在这一理论中发展出的支持向量机方法是一种新的通用学习机器,较以往方法表现出很多理论和实践上的优势。本书是该领域的权威著作,着重介绍了统计学习理论和支持向量机的关键思想、结论和方法,以及该领域的最新进展。本书的读者对象是在信息科学领域或数学领域从事有关机器学习和函数估计研究的学者和科技人员,也可作为模式识别、信息处理、人工智能、统计学等专业的研究生教材。