在基于目标的强化学习任务中, 欧氏距离常作为启发式函数用于策略选择, 其用于状态空间在欧氏空间内不连续的任务效果不理想. 针对此问题, 引入流形学习中计算复杂度较低的拉普拉斯特征映射法, 提出一种基于谱图理论的启发式策略选择方法. 所提出的方法适用于状态空间在某个内在维数易于估计的流形上连续, 且相邻状态间的连接关系为无向图的任务. 格子世界的仿真结果验证了所提出方法的有效性.