本发明公开了一种基于遗传算法优化BP神经网络的风电功率预测方法,从风电功率预测系统的数据处理模块中获取预测参考数据;对参考数据建立BP神经网络的预测模型,并采用多种群编码对应BP神经网络的不同结构,每个种群分别对神经网络权值阈值编码,生成不同长度的个体,用遗传算法中选择、交叉、变异操作进化优化每个种群,最后判断收敛条件并选择最优个体;再对BP神经网络初始化,用学习率可变的动量BP算法进一步训练网络直至收敛,利用该网络对风电功率进行预测;最后,还反复利用预测值,在一轮预测中进行多次预测实现了跨时间间隔的多步预测。本发明预测精度提高,计算时间减少,稳定性增强。