ARIMA预测模型训练集和预测集ARIMA模型全称为自回归积分滑动平均模型(AutoregressiveIntegratedMovingAverageModel,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列(Time-seriesApproach)预测方法[1],所以又称为Box-Jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳时间序列转化为平