1、深度学习与计算机视觉算法原理、框架应用与代码实现:本书全面介绍了深度学习及计算机视觉中基础的知识,并结合常见的应用场景和大量实例,带领读者进入丰富多彩的计算机视觉领域。作为一本“原理+实践”教程,本书在讲解原理的基础上,通过有趣的实例带领读者一步步亲自动手,不断提高动手能力,而不是枯燥和深奥原理的堆砌。全书共13章,分为2篇。第1篇基础知识,介绍了人工智能发展历程、计算机视觉概要、深度学习和计算机视觉中的基础数学知识、神经网络及其相关的机器学习基础、卷积神经网络及其一些常见结构,最后对前沿的趋势进行了简单探讨。第2篇实例精讲,介绍了Python基础、OpneCV基础、简单的分类神经网络、图像识别、利用Caffe做回归、迁移学习和模型微调、目标检测、度量