将Lasso-logistic模型引入个人信用评估,通过模拟实验发现,逐步回归法倾向于保留一些不重要的变量,而且选出正确模型的概率较低,而Lasso不仅计算更加快捷,可以同时进行变量选择和参数估计,而且能更准确地筛选出重要的变量。以信用卡消费信贷违约数据为例对我国个人信用评估进行实证分析发现,相对于全变量Logistic模型和逐步回归Logistic模型,Lasso-logistic模型更能抓住影响消费信用风险的关键因素,而且预测准确率也更高。