通过剪枝技术与欠采样技术相结合来选择合适数据,以提高少数类分类精度,研究欠采样技术在不平衡数据集环境下的影响。结果表明,与直接欠采样算法相比,本文算法不仅在accuracy值上有所提高,更重要的是大大改善了g-means值,特别是对非平衡率较大的数据集效果会更好。