SAR图像上水体和居民地信息的提取在实际应用中具有重要的意义。为了更好地提取SAR图像上水体和居民地,以单波段单极化Radarsat—lSAR图像为研究对象,首先利用半变异函数分析样本图像的结构特性来确定纹理信息提取的最佳参数;然后,在此基础上基于灰度共生矩阵计算SAR图像均值、角二阶矩和熵3种纹理测度,建立了适于图像分类的多维特征空间,从而有效地增强了水体和居民地信息;最后通过样本采集,使用支持向量机分类器进行水体和居民地信息提取,并采用近期归一化植被指数(NDVI)数据和分类结果进行目标层融合来消除山体因素的影响,信息提取的结果显示,分类总体精度为82.57%,Kappa系数为0.58,较准确地提取了水体和居民地信息。