Ta上传的资源 (0)

SAR图像上水体和居民地信息的提取在实际应用中具有重要的意义。为了更好地提取SAR图像上水体和居民地,以单波段单极化Radarsat—lSAR图像为研究对象,首先利用半变异函数分析样本图像的结构特性来确定纹理信息提取的最佳参数;然后,在此基础上基于灰度共生矩阵计算SAR图像均值、角二阶矩和熵3种纹理

 支持向量机(SVM)以其在小训练样本时良好的分类性能,目前已广泛应用于多个领域。本文在极化SAR图像特征提取基础上,将SVM应用于极化SAR图像分类,定性和定量地比较了全极化、双极化和单极化SAR图像的分类性能,分析了不同的极化组合对分类结果的影响,并根据地物极化散射特性分析了分类精度差异的成因。