:针对基于信息论的贝叶斯网络结构学习算法中结点集越大计算效率越低的缺点,采用主元分析(PCA)对样本数据降维,减少构造网络的结点数量,提高贝叶斯网络结构构造算法的效率。应用基于PCA方法构造贝叶斯网络,其结点少、结构简单,较传统贝叶斯网络具有较高的学习效率和分类准确率。