将粗糙集理论与直觉模糊集理论相结合,提出了一种基于直觉模糊粗糙集理论的知识获取方法。描述了直觉模糊相似关系下粗糙集的模型,并在此基础之上重新定义了正域、依赖度与非依赖度、确定性因子与非确定性因子等概念。详细分析了基于直觉模糊粗糙集的规则挖掘算法的基本步骤,最后通过实例验证了该算法的可行性。