基于覆盖的直觉模糊粗糙集 通过直觉模糊覆盖概念将覆盖粗糙集模型进行推广,提出一种基于直觉模糊覆盖的直觉模糊粗糙集模型.首先,介绍了直觉模糊集、直觉模糊覆盖和直觉模糊逻辑算子等概念;然后,利用直觉模糊三角模和直觉模糊蕴涵,构建两对基于直觉模糊覆盖的下直觉模糊粗糙近似算子和上直觉模糊粗糙近似算子;最后,给出了这些算子的基本性质并
基于直觉模糊粗糙集的一种知识获取方法 将粗糙集理论与直觉模糊集理论相结合,提出了一种基于直觉模糊粗糙集理论的知识获取方法。描述了直觉模糊相似关系下粗糙集的模型,并在此基础之上重新定义了正域、依赖度与非依赖度、确定性因子与非确定性因子等概念。详细分析了基于直觉模糊粗糙集的规则挖掘算法的基本步骤,最后通过实例验证了该算法的可行性。