传统PCA存在对异常值和特征噪声敏感等问题,基于L2,1范数的PCA算法改进了这些缺点。现有的基于L2,1范数的PCA算法是通过降低矩阵的秩来实现维数约简,而秩的计算复杂。针对这一问题,提出一种新的维数约简算法。该算法提出利用迹范数代替矩阵的秩来简化L2,1-PCA的计算,提高算法效率;对于算法的求解提出了基于拉格朗日乘子的方法并将算法应用扩展YaleB人脸数据集进行图像去噪。可视化的实验结果表明所提出的算法有效。