卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量的神经元组成。每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数。那么与其他的神经网络在分类方面哪里不同呢?卷积神经网络默认输入是图像,一个卷积神经网络由很多层组成,它们的输入是三维的,输出也是三维的,有的层有参数,有的层不需要参数。卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器