借鉴分层递阶结构原理和蚁群算法的思想,提出了一种基于信息素的粒子群算法并用来优化前向神经网络的结构和权值。通过在控制基因中释放信息素进行粒子控制基因的更新,实现了粒子间信息的共享。粒子群的惯性权重采用指数曲线衰减的形式,给每代最差粒子的速度随机加入干扰,克服了标准粒子群算法在寻优时出现的粒子早熟现象。仿真结果表明该算法能快速确定神经网络的结构和权值,表现出良好的收敛性能。