首先分别对人耳和侧面人脸建立基于全空间线性判别分析(FSLDA)的分类器;然后采用贝叶斯决策理论中常见的积、和、中值多分类器融合算法,并对投票算法进行了改进。实验结果表明,与单一的人耳或侧面人脸特征识别比较,人耳和侧面人脸融合的多模态识别率得到提高,并扩大了识别范围。