提出一种基于半监督学习的粗糙集知识约简算法(SLRS).SLRS基于对信息论基本概念的引申定义,描述了各条件属性的重要程度以及相互之间的依赖关系.对于数据库中某些记录属性域存在的缺失值,基于半监督学习进行启发式属性值约简,进而求取粗糙集约简决策表,即使在现有知识不足或信息不完备的情况下,也能通过半监督学习构造新的规则补充到知识库中.样例分析及在UCI数据集上的实验结果均表明了所提出算法的合理性和有效性.