针对光照变化对人脸识别的效果带来严重影响,提出一种对人脸识别的光照变化具有鲁棒性的方法,即基于加权分块稀疏表示的人脸识别方法。该方法首先对人脸图像进行离散余弦变换(DCT),通过去除DCT系数的低频部分来移除光照变化分量。通过反离散余弦变换得到光照归一化后的人脸图像,将人脸图像分块,独立地对每个子块作基于稀疏表示的分类,并对每个子块的分类结果进行加权投票得出测试人脸图像的类别。在YaleB、extended-YaleB、CMU-PIE和FERET人脸库上进行实验,实验结果表明该方法适用于光照鲁棒的人脸识别。