一种基于稀疏表示的快速人脸识别方法
两阶段算法是指第一阶段用一个分类算法,选取距离测试样本近的M类训练样本,第二阶段再用这M类训练样本作为新的训练样本集进行识别。为了加快识别速度,提出一种全新的快速选取M类训练样本的算法。首先,利用k均值聚类算法对训练样本进行处理,把训练样本之间比较近的样本聚合成一个大类,对于一个新的测试样本,只需要计算各大类聚类中心间的距离,选取距离近的若干个大类,每个大类包含若干个原始训练样本的类别,将这些类别的所有训练样本组合起来,构成新的训练样本集,最后利用新的训练样本集,进行第二阶段的识别。在不同的人脸数据库上进行实验验证,结果表明本文算法在识别率略有提高的基础上,可以达到更快的识别速度。
暂无评论