为解决高光谱图像数据维数高、冗余信息较多、容易出现Hughes现象等问题,将改进的连续投影算法应用到高光谱图像降维处理中。改进的连续投影算法在原始算法基础上,分别采用峰度值和偏度值对初始波段的选择进行限制,在较短的时间内获得了少量高效的特征波段,提高了分类性能和处理速度。在AVIRIS数据基础上,对本文提出的算法进行实验仿真,分别采用相关向量机(RVM)和支持向量机(SVM)分类器进行分类处理,并与改进的连续投影算法和蒙特卡罗算法的结果进行比较,实验结果表明改进算法的降维性能更好。