针对传感器量测信息异常与传感器之间数据传输错误,融合系统中的数据会出现异常值(outlier)的目标跟踪问题,提出了一种集中式非线性抗差卡尔曼滤波算法。该方法应用鲁棒统计理论,通过设计代价函数来对系统的量测噪声方差进行重新构造,并利用标准无味卡尔曼滤波(UKF)的观测更新算法对非线性观测方程进行滤波。该方法无须对观测方程进行线性近似,在保持鲁棒性的同时不损失UKF的滤波精度。通过一个简明实例说明了该方法在量测出现异常值的情况下依然能对目标进行有效的跟踪滤波,鲁棒性和滤波精度优于传统的Huber鲁棒跟踪方法。