初始聚类中心给定。K均值聚类算法首先是聚类算法。K均值算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。它将相似的对象归到同一个簇中,聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好,之所以称之为K-均值是因为它可以发现k个不同的簇。