目前的文本特征生成算法一般采用加权的文本向量空间模型,该模型使用TF-IDF评价函数来计算单个特征的权值,这种算法生成的文本特征冗余度往往都比较高。针对这一问题,采用了一种基于聚类加权的文本特征生成算法,首先对特征候选集进行初始加权处理;然后通过语义和信息熵对特征进行进一步加权处理;最后使用特征聚类对冗余特征进行剔除。实验表明该算法比传统的TF-IDF算法的平均分类准确率高出5%左右。