暂无评论
近年来,谱聚类因其深厚的理论基础而在机器学习和数据挖掘领域中引起了广泛的关注。针对谱聚类算法中采用Laplacian矩阵时无法获得较好的图切判据,通过引入p-Laplacian算子,提出了一种基于p-
针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FC
针对许多经典的图聚类算法存在输入参数难以确定、时间复杂度过高、聚类精度较低等缺点,提出了一种无须输入参数的基于核心顶点的图聚类算法(NGCC)。该算法将相似的顶点分配到同一个簇后,再利用PageRa
针对基于密度的聚类方法不能发现密度分布不均的数据样本的缺陷,提出了一种基于代表点和点密度的聚类算法。算法通过检查数据库中每个点的k近邻来寻找聚类。首先选取一个种子点作为类的第一个代表点,其k近邻为其代
通过引入聚类竞争机制,提出了一种基于免疫聚类竞争的关联规则挖掘算法。将数据原始记录和候选模式分别作为抗原和识别抗体,通过聚类竞争加速克隆扩增,提高抗体成熟力及亲和性,增强候选模式支持度。实验及应用表明
一种基于结构相似性的图聚类算法,金超,张龙波,图聚类是发现网络中潜在结构的一项重要任务。提出了一种基于结构相似性的图聚类算法GNSCAN,给出了该算法的相关定义以及算法的执行
一种基于遗传算法的密度聚类改进策略,叶宗林,曹晖,本文提出了一种基于遗传算法的密度聚类改进策略。选择闵科夫斯基标准作为遗传算法的适应度函数,对DBSCAN算法的Minpts和Eps两个参数在
聚类集成算法通常对聚类成员差异性要求较高,导致算法在生成聚类成员阶段计算复杂度提高。针对该问题提出了一种基于遗传算法的聚类集成方法CEGA,不考虑聚类成员的差异性,而是利用目标函数将聚类问题转化为聚类
论文研究-一种基于旋转最小-最大超盒的聚类算法.pdf, 针对传统聚类算法无法解决复杂分布数据聚类的问题,本文提出了一种
提出了一种把自组织特征映射SOM和Kmeans算法结合的聚类组合算法。先用SOM对文档聚类,然后以SOM的输出权值初始化Kmeans的聚类中心,再用Kmeans算法对文档聚类。实验结果表明,该聚
暂无评论