论文研究.基于网格梯度的多密度聚类算法.pdf
大多数现有的聚类算法都致力于发现任意形状、任意大小的类,但很难有效处理多密度的数据集。提出的算法利用网格聚类速度快的特点,先通过高斯平滑去除噪声,再采用网格梯度的思想找出隐藏在多密度数据集中的簇。算法在人工数据集上进行了实验,结果表明该算法能有效地去除噪声,发现多密度的簇,具有较好的聚类效果。
大多数现有的聚类算法都致力于发现任意形状、任意大小的类,但很难有效处理多密度的数据集。提出的算法利用网格聚类速度快的特点,先通过高斯平滑去除噪声,再采用网格梯度的思想找出隐藏在多密度数据集中的簇。算法在人工数据集上进行了实验,结果表明该算法能有效地去除噪声,发现多密度的簇,具有较好的聚类效果。