作为一种新型群体智能方法,苍狼算法模拟了苍狼在群体捕食过程中的搜索跟踪、包围、攻击等行为,具有结构简单、寻优能力强的特点。分析了该算法的优化机理,并对算法优化过程进行了数学定义及描述;提出了一种基于并行搜索策略的改进型苍狼算法,将狼群分组,在整个搜索过程中同时进行局部开发和全局探索活动,以更好地满足目标搜寻的要求。通过典型的基准测试函数对算法进行了性能仿真测试,实验结果表明,与其他群体智能优化方法相比,改进型苍狼算法在收敛速度、收敛精度及鲁棒性等方面均具有一定优势。