针对现有无须重新初始化的变分水平集分割模型,存在对边缘模糊、对比度差等图像不是很敏感、分割效果不理想的问题,提出了一种基于核模糊聚类的变分水平集医学图像分割方法。将原始图像进行核模糊C-均值聚类,把得到的聚类结果带入初始化水平集函数得到初始轮廓,最后利用李模型的分割方法实现最终的图像分割。实验结果表明,该方法具有良好的分割质量,适应性强,同时可减少迭代次数。