特征降维是文本分类过程中的一个重要环节,为了提高特征降维的准确率,选出能有效区分文本类别的特征词,提高文本分类的效果,提出了结合文本类间集中度、文本类内分散度和词频类间集中度的特征降维方法。当获取特征词在文本集上的整体评价时,提出了一种新的全局评估函数,用最大值与次大值之差作为最终的评价函数值。实验比较了该方法与传统的特征降维方法,结果表明该方法在中文文本分类中具有较好的降维效果。