回溯搜索优化算法(BSA)是近年提出的一种新型优化算法,针对其收敛速度较慢、易陷于局部最优的缺点,提出了一种基于最优个体引导和小生境技术相结合的改进BSA算法。本方法首先在BSA的变异操作中引入向最优个体学习的策略,以提高算法的收敛速度;其次,设计一种新的小生境排挤技术,根据每个个体到其他个体距离的平均最小值确定小生境半径,排除部分相似性较高的个体;结合群体当前的最差信息,设计一种新的变异方法产生一定数量的新个体补充到新的种群中,维持群体数量的恒定并增强群体多样性。改进的BSA算法充分考虑了算法的收敛速度和群体的多样性,较大地提高了传统BSA算法的性能。对10个典型函数进行仿真测试,并与其他算法结果进行对比,实验结果表明,改进算法在收敛速度与精度方面具有较好的