群智感知网络中现有隐私保护算法对所有位置采用相同的隐私保护策略,导致位置隐私或保护过度或保护不足,且获得的感知数据精度较低。针对这一问题,提出了一种满足用户个性化隐私安全需求的位置隐私保护算法。首先,根据用户的历史移动轨迹,挖掘用户对不同位置的访问时长、访问频率以及访问的规律性来预测位置对用户的社会属性;然后,结合位置的自然属性,预测用户—位置的敏感等级;最后,结合用户在不同的位置有不同的隐私安全需求的特点,设置动态的隐私判定方案,在每个位置选择敏感度低的用户参与感知任务,以确保用户在隐私安全的前提下,贡献时空相关性精确高的感知数据。仿真结果表明,该算法在提高隐私保护水平的同时还提高了感知数据的精度。