近年来,深度学习中的卷积神经网络已经广泛运用于图像识别领域,它不仅显著提升了识别准确率,同时在特征提取速度方面也优于许多传统方法。针对高速公路环境下的车型识别问题,引入卷积神经网络(CNNs)理论,设计相应特征提取算法,并结合SVM分类器构建识别系统。通过对高速公路上主要三种车型(小车、客车、货车)的分类实验显示,该方法在识别精度及速度上均取得了较显著的提高。