由于自回归模型的参数估计可归结为求解一个线性方程组的问题,所以其在平稳时序数据的辨识过程中具有广泛的应用场合。提出了一种基于自回归模型的快速辨识算法,以递推的方式对平稳时序数据自相关函数矩阵的秩的下界值进行估计,再以该估计值作为自回归模型的起始阶数对系统进行依次的递阶辨识。最后,基于F检验对相邻阶次的拟合误差的变化趋势进行显著性检验,并以检验结果作为算法的结束条件。新算法在保证较高辨识精度的条件下,其计算效能及辨识精度的稳定性均优于现有的自回归模型辨识算法,实验结果验证了新算法的有效性和先进性。