在视频跟踪时,传统的粒子滤波算法在目标区域出现遮挡、光照变化等情况下通常存在鲁棒性较差的问题,因此提出一种采用巴氏(Bhattacharyya)系数判断模型更新时机的鲁棒视觉跟踪算法。算法以粒子滤波算法为框架,每隔一定帧数抽样检测目标变化,利用当前模型与候选模型之间的巴氏系数统计特征的相似性,从而判断更新时机。仅当目标姿态逐渐改变且无背景干扰时更新目标模型;在发生遮挡或光照改变较大时则不更新,保持当前模型继续跟踪。算法判断是否出现影响目标的匹配因素,从而适时采取模型更新策略。实验结果表明,本算法通过选择性更新模型,在未考虑尺度变化的情况下,能够更加有效地抑制背景干扰和避免模型漂移,在诸多复杂场