利用压缩感知理论进行图像重构时,基于分块思想进行可有效提高重构速度,但同时会带来较强的块效应。为了解决该问题,提出了一种基于TV准则的图像分块重构算法。该算法将基于整幅图像时梯度计算方法进行改进,充分利用已重构块的边界像素信息,从而有效消除了图像的块效应。实验结果表明,提出的算法能够有效消除图像的块效应,提高重构图像的主客观质量,与TVAL3算法相比,重构图像的PSNR值最多提高了0.84dB,时间最高可节省24.38%,算法尤其适用于低采样率的情况。