针对人工蜂群算法易陷入局部最优的不足,考虑到基本蜂群算法中个体选择大多基于贪婪选择的思想,从而使算法快速向适应度值高的个体进化而陷入局部停滞。为此,提出一种基于轮盘赌的反向选择机制,以保持蜂群个体的多样性而使算法保持较好进化能力。通过对经典测试函数的仿真实验表明,改进的蜂群算法有更快的收敛速度和更好的收敛精度,且改进的蜂群算法对群体规模有很强的鲁棒性。