为了提取复杂环境下人脸图像的有效特征,提出了一种结合DMMA(discriminativemulti-manifoldanalysis)和方向梯度直方图(HOG)特征提取算法,利用了一种新的自适应方法计算子图像块的相似度。在DMMA算法中,将一幅样本图像分为不重叠的子图像块后,对每一个小块使用HOG算子进行处理,处理后形成一个统计流形,然后进行特征提取,利用基于重建的流形—流形间的距离最近邻方法进行分类识别。在AR人脸库和FERET人脸库上的实验结果表明,该算法对人脸图像的光照和几何变化比传统的DMMA算法识别性能更好。