残差网络是由来自MicrosoftResearch的4位学者提出的卷积神经网络,在2015年的ImageNet大规模视觉识别竞赛(ImageNetLargeScaleVisualRecognitionChallenge,ILSVRC)中获得了图像分类和物体识别的优胜。残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。其内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题。该文件是Caltech-101数据库经过Resnet特征提取的特征矩阵.