针对传统马尔可夫模型(HMM)状态停留时间必须服从指数分布假设的不足,提出了一种基于隐半马尔可夫模型(HSMM)的两阶段设备缺陷状态识别方法。首先,通过分析HSMM模型的参数构成及基本特点,并结合两阶段设备的劣化过程特点提出合理的假设条件,建立起用于描述两阶段设备运行状态的HSMM模型;其次,针对HSMM模型的参数估计问题,引入最大似然估计法,并提出了小样本条件下求解状态持续时间的方法;再次,基于建立的HSMM模型,给出了两阶段设备缺陷状态早期识别的计算公式及步骤,通过对状态停留时间的概率估计实现了对缺陷状态的早期识别;最后,通过计算机仿真方法模拟了HSMM模型的建模、参数估计及缺陷状态识别过