传统的谱空联合分类算法通常定义一个邻域空间作为空间信息,忽略空间中非邻域空间信息,且容易将异类像元也考虑在内。针对高光谱图像分类问题,提出了一种加权K近邻算法能够自适应地提取空间信息。首先定义光谱和空间坐标组成的特征空间,利用该特征空间寻找目标像元的K个相似像元,并对这些像元根据特征空间进行加权;将加权后的像元按照一定方式组合成三维张量表示最终的谱空联合信息,使用三维卷积神经网络对其进行训练,得到最终分类结果。从实验结果来看,相对于改进前的算法,在总体分类精度上得到了一定的提升,与原始的三维卷积神经网络相比,在收敛速度上也得到大大提升,为高光谱图像的谱空联合分类提供了一种更加实用的方法。