对于传统的恶意程序检测方法存在的缺点,针对将数据挖掘和机器学习算法被应用在未知恶意程序的检测方法进行研究。当前使用单一特征的机器学习算法无法充分发挥其数据处理能力,检测效果不佳。将语音识别模型与随机森林算法相结合,首次提出了综合APK文件多类特征统一建立N-gram模型,并应用随机森林算法用于未知恶意程序检测。首先,采用多种方式提取可以反映Android恶意程序行为的三类特征,包括敏感权限、DVM函数调用序列以及OpCodes特征;然后,针对每类特征建立N-gram模型,每个模型可以独立评判恶意程序行为;最后,三类特征模型统一加入随机森林算法进行学习,从而对Android程序进行检测。基于该方