针对基本蝙蝠算法存在收敛速度慢,易陷入局部最优,求解精度低等缺陷,提出一种融合局部搜索的混合蝙蝠算法用于求解无约束优化问题。该算法利用混沌序列对蝙蝠的位置和速度进行初始化,为全局搜索的多样性奠定基础;融合Powell搜索以增强算法的局部搜索能力,加快收敛速度;使用变异策略在一定程度上避免算法陷入局部最优。选取几个标准测试函数进行仿真实验,结果表明:与基本蝙蝠算法和粒子群优化算法相比,混合蝙蝠算法具有更好的寻优性能。