针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(slidingbasicwindowssampling,SBWB)与高斯过程回归(Gaussianprocessregression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的