差分进化算法简单高效,然而在求解大规模优化问题时,其求解性能迅速降低。针对该问题,提出一种正交反向差分进化算法。首先,该算法利用正交交叉算子,加强了算法的局部搜索能力。其次,为防止过强的局部搜索使算法陷入早熟收敛,利用反向学习策略调节种群多样性,从而有效地平衡算法的全局和局部搜索能力。利用11个标准测试函数进行实验,并和差分进化算法的四种优秀改进版本进行比较,实验结果表明提出的算法求解精度高、收敛速率快,是一种求解大规模优化问题的有效算法。