后向传播神经网络算法是一种经典的分类算法,但是通常该算法训练时间较长。针对这种不足,提出了一种基于核聚类的快速后向传播算法。利用核聚类将原始样本划分为多个簇,对每一个簇计算簇中心样本,利用所有的簇中心样本作为新训练集进行神经网络学习。在UCI标准数据集和说话人识别数据集上的仿真实验,充分说明了算法较传统后向传播算法具有明显的速度优势。