为了提高AP算法的数据集分类准确度和收敛速度,提出一种基于改进AP算法的迭代加权更新的带加速算子的半监督AP聚类算法(AP-SSM)。该算法采用带约束的标签映射的方法对样本所属子簇进行分类,在采用传统AP聚类算法上引入了迭代加权更新方法来吸引度参数和适选度参数,并在算法聚类过程中引入了加速因子,考虑到了子簇自身数据中心和权重值的加速因子可以提高聚类精度和算法收敛性能。仿真实验结果表明,AP-SSM算法相比AP、AP-VSM、SAP算法,在数据集分类准确度和算法运行速度上具有更好的效果。